Skip to content

vllm.transformers_utils.configs.afmoe

__all__ module-attribute

__all__ = ['AfmoeConfig']

AfmoeConfig

Bases: PretrainedConfig

Source code in vllm/transformers_utils/configs/afmoe.py
class AfmoeConfig(PretrainedConfig):
    model_type = "afmoe"

    def __init__(
        self,
        vocab_size: int = 200_192,
        hidden_size: int = 2048,
        intermediate_size: int = 6144,
        moe_intermediate_size: int = 1408,
        num_hidden_layers: int = 32,
        num_dense_layers: int = 1,
        num_attention_heads: int = 16,
        num_key_value_heads: int | None = None,
        head_dim: int = 128,
        hidden_act: str = "silu",
        max_position_embeddings: int = 131072,
        initializer_range: float = 0.02,
        rms_norm_eps: float = 1e-5,
        use_cache: bool = True,
        tie_word_embeddings: bool = False,
        rope_theta: float = 10000.0,
        rope_scaling: dict | None = None,
        num_experts: int = 64,
        num_experts_per_tok: int = 6,
        num_shared_experts: int = 2,
        num_expert_groups: int = 1,
        num_limited_groups: int = 1,
        score_func: str = "sigmoid",
        route_norm: bool = True,
        route_scale: float = 1.0,
        global_attn_every_n_layers: int = 4,
        sliding_window: int = 2048,
        layer_types: list[str] | None = None,
        attention_dropout: float = 0.0,
        mup_enabled: bool = False,
        n_group: int = 1,
        topk_group: int = 1,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_dense_layers = num_dense_layers
        self.num_attention_heads = num_attention_heads
        self.num_key_value_heads = num_key_value_heads or num_attention_heads
        self.head_dim = head_dim
        self.hidden_act = hidden_act
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling

        self.moe_intermediate_size = moe_intermediate_size
        self.num_experts = num_experts
        self.num_experts_per_tok = num_experts_per_tok
        self.num_shared_experts = num_shared_experts
        self.num_expert_groups = num_expert_groups
        self.num_limited_groups = num_limited_groups
        self.score_func = score_func
        self.route_norm = route_norm
        self.route_scale = route_scale

        self.global_attn_every_n_layers = global_attn_every_n_layers
        self.sliding_window = sliding_window
        self.layer_types = layer_types
        self.attention_dropout = attention_dropout

        self.mup_enabled = mup_enabled
        self.n_group = n_group
        self.topk_group = topk_group

        super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)

attention_dropout instance-attribute

attention_dropout = attention_dropout

global_attn_every_n_layers instance-attribute

global_attn_every_n_layers = global_attn_every_n_layers

head_dim instance-attribute

head_dim = head_dim

hidden_act instance-attribute

hidden_act = hidden_act

hidden_size instance-attribute

hidden_size = hidden_size

initializer_range instance-attribute

initializer_range = initializer_range

intermediate_size instance-attribute

intermediate_size = intermediate_size

layer_types instance-attribute

layer_types = layer_types

max_position_embeddings instance-attribute

max_position_embeddings = max_position_embeddings

model_type class-attribute instance-attribute

model_type = 'afmoe'

moe_intermediate_size instance-attribute

moe_intermediate_size = moe_intermediate_size

mup_enabled instance-attribute

mup_enabled = mup_enabled

n_group instance-attribute

n_group = n_group

num_attention_heads instance-attribute

num_attention_heads = num_attention_heads

num_dense_layers instance-attribute

num_dense_layers = num_dense_layers

num_expert_groups instance-attribute

num_expert_groups = num_expert_groups

num_experts instance-attribute

num_experts = num_experts

num_experts_per_tok instance-attribute

num_experts_per_tok = num_experts_per_tok

num_hidden_layers instance-attribute

num_hidden_layers = num_hidden_layers

num_key_value_heads instance-attribute

num_key_value_heads = (
    num_key_value_heads or num_attention_heads
)

num_limited_groups instance-attribute

num_limited_groups = num_limited_groups

num_shared_experts instance-attribute

num_shared_experts = num_shared_experts

rms_norm_eps instance-attribute

rms_norm_eps = rms_norm_eps

rope_scaling instance-attribute

rope_scaling = rope_scaling

rope_theta instance-attribute

rope_theta = rope_theta

route_norm instance-attribute

route_norm = route_norm

route_scale instance-attribute

route_scale = route_scale

score_func instance-attribute

score_func = score_func

sliding_window instance-attribute

sliding_window = sliding_window

topk_group instance-attribute

topk_group = topk_group

use_cache instance-attribute

use_cache = use_cache

vocab_size instance-attribute

vocab_size = vocab_size

__init__

__init__(
    vocab_size: int = 200192,
    hidden_size: int = 2048,
    intermediate_size: int = 6144,
    moe_intermediate_size: int = 1408,
    num_hidden_layers: int = 32,
    num_dense_layers: int = 1,
    num_attention_heads: int = 16,
    num_key_value_heads: int | None = None,
    head_dim: int = 128,
    hidden_act: str = "silu",
    max_position_embeddings: int = 131072,
    initializer_range: float = 0.02,
    rms_norm_eps: float = 1e-05,
    use_cache: bool = True,
    tie_word_embeddings: bool = False,
    rope_theta: float = 10000.0,
    rope_scaling: dict | None = None,
    num_experts: int = 64,
    num_experts_per_tok: int = 6,
    num_shared_experts: int = 2,
    num_expert_groups: int = 1,
    num_limited_groups: int = 1,
    score_func: str = "sigmoid",
    route_norm: bool = True,
    route_scale: float = 1.0,
    global_attn_every_n_layers: int = 4,
    sliding_window: int = 2048,
    layer_types: list[str] | None = None,
    attention_dropout: float = 0.0,
    mup_enabled: bool = False,
    n_group: int = 1,
    topk_group: int = 1,
    **kwargs,
)
Source code in vllm/transformers_utils/configs/afmoe.py
def __init__(
    self,
    vocab_size: int = 200_192,
    hidden_size: int = 2048,
    intermediate_size: int = 6144,
    moe_intermediate_size: int = 1408,
    num_hidden_layers: int = 32,
    num_dense_layers: int = 1,
    num_attention_heads: int = 16,
    num_key_value_heads: int | None = None,
    head_dim: int = 128,
    hidden_act: str = "silu",
    max_position_embeddings: int = 131072,
    initializer_range: float = 0.02,
    rms_norm_eps: float = 1e-5,
    use_cache: bool = True,
    tie_word_embeddings: bool = False,
    rope_theta: float = 10000.0,
    rope_scaling: dict | None = None,
    num_experts: int = 64,
    num_experts_per_tok: int = 6,
    num_shared_experts: int = 2,
    num_expert_groups: int = 1,
    num_limited_groups: int = 1,
    score_func: str = "sigmoid",
    route_norm: bool = True,
    route_scale: float = 1.0,
    global_attn_every_n_layers: int = 4,
    sliding_window: int = 2048,
    layer_types: list[str] | None = None,
    attention_dropout: float = 0.0,
    mup_enabled: bool = False,
    n_group: int = 1,
    topk_group: int = 1,
    **kwargs,
):
    self.vocab_size = vocab_size
    self.hidden_size = hidden_size
    self.intermediate_size = intermediate_size
    self.num_hidden_layers = num_hidden_layers
    self.num_dense_layers = num_dense_layers
    self.num_attention_heads = num_attention_heads
    self.num_key_value_heads = num_key_value_heads or num_attention_heads
    self.head_dim = head_dim
    self.hidden_act = hidden_act
    self.max_position_embeddings = max_position_embeddings
    self.initializer_range = initializer_range
    self.rms_norm_eps = rms_norm_eps
    self.use_cache = use_cache
    self.rope_theta = rope_theta
    self.rope_scaling = rope_scaling

    self.moe_intermediate_size = moe_intermediate_size
    self.num_experts = num_experts
    self.num_experts_per_tok = num_experts_per_tok
    self.num_shared_experts = num_shared_experts
    self.num_expert_groups = num_expert_groups
    self.num_limited_groups = num_limited_groups
    self.score_func = score_func
    self.route_norm = route_norm
    self.route_scale = route_scale

    self.global_attn_every_n_layers = global_attn_every_n_layers
    self.sliding_window = sliding_window
    self.layer_types = layer_types
    self.attention_dropout = attention_dropout

    self.mup_enabled = mup_enabled
    self.n_group = n_group
    self.topk_group = topk_group

    super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)